AD-A284 871 - &
MRRANERI :
TASK: UU03
CDRL: 05156
February 1993

Reuse Library Framework
Modeler Tutorial

[a PTIC
S ELECTER

Informal Technical Data SEP 2 8 1994 v -
This document q be pproved
for public ral nd cx.l

distributicn nmtd.

STARS-UC-05156/020/00
February 1993

%D 9q-30824 3
00¢ \\\\\\I\\\\\\\l\l\\‘\\l\\\\\l\\l\\i‘\\\l‘\!\\ A

INFORMAL TECHNICAL REPORT
For The

(STARS)
RLF Modeler Tutorial

STARS-UC-05156/020/00
February 1993

Data Type: A005, Informal Technical Data

CONTRACT NO. I'19628-88-D-0031
Delivery Order 0011

Prepared for:

Electronic Systems Center
Air Force Systems Coinmand, USAF
Hanscom AFB, MA 01731-5000

Prepared by:

Paramax Systems Corporation
12010 Sunrise Valley Drive
Reston, VA 22091

TASK: U03
CDRL: 05156
February 1993

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS

DTIC QUALITY INSPECTED 3

L A
MCCesinn For \ o
o
IS Ay R
SR Tan 0
i nnd 0
l:.!»i«"_', Yiis
e
3y
et ikt T
Aoonatoty Codes
S ’ T ""'.'17)-"75;""“
R 4\"¢ .\ '
Dist I > gial
A | J

TASK: U03
CDRL: 05156
February 1993

Data ID: STARS-UC-05156/020/00

Distribution Statement “A”
per DoD Directive 5230.24
Authorized for public release; Distribution is unlimited.

Copyright 1993, Paramax Systems Corporation, Reston, Virginia
Copyright is assigned to the U.S. Government, upon delivery thereto, in accordance with
the DFAR Special Works Clause.

Developed by: Paramax Systems Corporation

This document, developed under the Software Technology for Adaptable, Reliable Systems
(STARS) program, is apprcved for release under Distribution “A” of the Scientific and Tech-
nical Information Program Classification Scheme (DoD Directive 5230.24) unless otherwise
indicated. Sponsored by the U.S. Defense Advanced Research Projects Agency (DARPA)
under contract F19628-88-D-0031, the STARS program is supported by the military services,
SEI, and MITRE, with the U.S. Air Force as the executive contracting ageut.

Permission to use, copy, modify, and comment on this document for purposes stated un-
der Distribution “A” and without fee is hereby granted, provided that this notice appears
in each whole or partial copy. This document retains Contractor indemnification to The
Government regarding copyrights pursuant to the above referenced STARS contract. The
Government disclaims all responsibility against liability, including costs and expenses for vi-
olation of proprietary rights, or copyrights arising out of the creation or use of this document.

In addition, the Government, Paramax, and its subcontractors disclaim all warranties with
regard to this document, including all implied warranties of merchantability and fitness, and
in no event shall the Government, Paramax, or its subcontractor(s) be liable for any special,
indirect or consequential damages or any damages whatsoever resulting from the loss of use,
data, or profits, whether in action of contract, negligence or cther tortious action, arising in
connection with the use or performance of this document.

INFORMAL TECHNICAL REPORT
RLF Modeler Tutorial

Principal Author(s):

TASK: U03
CDRL: 05156
February 1993

Jim Solderitsch Date
Approvals:
Task Manager Richard E. Creps Date

(Signatures on File)

TASK: U03
CDRL: 05156
February 1993

INFORMAL TECHNICAL REPORT
RLF Modeler Tutorial

Change Record:

Data ID Description of Change Date Approval
STARS-UC-05156/020/00 | Reissued: Minor changes to | February 1993 | on file
accompany RLF v4.1 release
STARS-UC-05156/010/00 | Original Issue November 1992 | on file

S L A

REPORT DOCUMENTATICN PAGE

Form Approved
OMB No. 0704-0188

coliection st intarmancn, Intiv@ing wﬂn
Carmmghady, Suite 1204 arirqion, |

PYDIIC DA™ ¢ DUPIEN *0F this C21ECION Of INTOFMATICE 14 PIUMBTES 12 BvArage ' *. J7 DEF ' HEIRIE, NCILAIFQ TNE LM 107 1€view A § AITUCUONS, $EALTRING S 41ING ABLA MOUN

FOIPRNIFD AP0 MAIATAINING TAE GITE NERIED, 31V COMOICHNG JAQ FPOVISW IR TR (3’ = IR S/ INTOPMATION SENY COMMENTS Feqarmns TR S BUraeN SLIMIte Cr ANy JTNES J3DCCT OF
110 107 reaucing tRI DUPEPA T2 Aatr.=3' TN ~epdQuarters S8/ vices, DirecTOrate 107 nt2emation ODRTAtION ana Repcry 1219 Jetter

222024302, and 10 tre Otice A* Vanaae~e~t ard Buaget, Penerwork REQUTTiOn Prorezt (2703.2'88) Wasnington, OC 2080)

2. REPORT DATE

T e —
1. AGENCY USE ONLY (Leave blank)

S e
3. REPORT TYPE AND DATES COVERED
Informal Technical Report

A — T = Yy
4. TITLE AND SUSTITLE

RLF Modeler Txtorial

5. AUTHGR(S)

Paramax Corporation

S. FUNDING NUMBERS

F19628-88-D-0031

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Paramax Corporation
1210 Sunrise Valley Drive
Raston, VA 22090

8. PERFORMING ORGANIZATION
REPORT NUMBER

STARS-UC-05156/020/00

9. SPONSORING . MONITOKING AGENCY NAME(S) AND ADDRESS(ES)

Department of the Air Force
Headquarter, Electronic Systems
Hanscom AFB, MA 01731-~5000

AG

10. SPONSORING . MONITORING

ENCY REPORT NUMBER
05156

11, SUPPLEMENTARY NOTES

| T T vt — T YT T o Y T T Y Y — Y I F =ty e
12a. DISTRIBUTION / AVAILABILITY STATEMENY

Distribution "A"

12b. DISTRIBUTION CODE

33 ABSTRACT (Maximum 200 words)

distinct categories of RLF users:

ical Browser (RLF GB);

e RLF model developers and application designers.

This package is part of an evolving series of orientation packages that constitute a com-
prehensive RLF training program. Eventually, this program will include material for three

o end users of RLF-based applications, concentrating on those employing the RLF Graph-

e maintainers and administrators of RLF-based applications and in particular the un-
derlying knowledge bases on which the applications depend for much of their power;

14, SUBJECT TERMS

e e e O e P
18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

17. SECURITY CLASSIFICATION
OF REPORT
Unlcassified

YT T O T T T TS
19. SECURITY CLASSIFICATION

OF ABSTRACT
Unclassified

15. NUMBER OF PAGES
80

16. PRICE CODE

20. LIMITATION OF ABSTRACT
SAR

NSN 7540-0°.280-5500

Coarmarn Sivemm N8 'Roy 2.8

February 1993 STARS-UC-05156/020/00

1 Introduction

The RLF is a knowledge-based system, developed by Paramax with support by the STARS
program, whose primary application has been the design, implementation, and deployment
of domain-specific reuse library systems. A reuse library supports software engineers by
enabling them to quickly locate software assets (e.g. requirements, designs, code modules,
test plans etc.) that can be of use in their construction of a software system.

What is the RLF?

e RLF stands for Reuse Library Framework.

Slice 1 e The RLF is a system, written in Ada, that enables the
creation of knowledge-based systems.

e in particular, the RLF has been applied to the
creation of domain-specific reuse libraries.

A domain is an application area, typically the one of immediate relevance to the software en-
gineer, and a domain model is a machine representation of information about the application-
area and the library assets available for the application area. The model can contain general
domain information along with data about the form, fit, and function of the available library
assets.

This package is part of an evolving series of orientation packages that constitute a com-
prehensive RLF training program. Eventually, this program will include material for three
distinct categories of RLF users:

¢ end users of RLF-based applications, concentrating on those employing the RLF Graph-
ical Browser (RLF GB);

¢ maintainers and administrators of RLF-based applications and in particular the un-
derlying knowledge bases on which the applications depend for much of their power;

¢ RLF model developers and application designers.

Page 1

February 1993 STARS-U7-05156/020/00

During the first part of this modeling orientation, a survey of domain analysis and modeling
activities and concepts is presented (see SLIDE 2) with a focus on how these activities fit into
a basic system development process framework that is a joint product of the three STARS
Prime contractors.

f

Overview
Basic Modeling Concepts

e Introduction
Slide 2

e Domain Analysis and Mcdeling Context

e STARS CFRP

e Advantages of an RLF-like approach

During the second part of the orientation, the emphasis shifts to showirg how RLF capa-
bilities support the requirements and opportunities afforded by a careful domain analysis
(see SLIDE 3) with a focus on how the RLF supports the production and representation of
domain models.

r’

Overview (cont)
RLF Modeling Capabilities

o AdaKNET semantic networks and LMDL
Slide 3

e Hybridization -- attributes and inferencers

e Asset Processing -- defining RLF actions

¢ Modeling Suggestions

Page 2

February 1993 STARS-UC-05156/020/G"

The third part (SLIDE 4) is structured to accompany a demonstration of using the RLF to
create, modify and maintain a working library for a simple application domain.

Overview (cont)
RLF Model Development

e Model Creation
e Model Evolution
Slide 4
e Modei Hybridization

e Models and Submodels

e AdaTAU rule-based inference engine and RBDL

- adding user-guidance facilities to a model

All of the model-building activities will address the problem of how to create and evolve
models which focus on the needs of a user community whe will interact with a library and
the applications that are based on these models.

While a graphical user interface provides library end-users with convenient and powerful
methods to access assets and the underlying library model, it is not currentiy possible to build
or modify a library model graphically. Model builders and library maintainers use ordinary
text editors to create and modify RLF model description files which are then processed by
the respective description language processors.

2 Domain Analysis and Modeling Context

The slides and notes contained in this package address how to develop library models that
support the construction of domain-specific reuse libraries. SLIDE 5 lists some reasons to
consider a domain-specific modeling approach.

Page 3

February 1993 STARS-UC-05156/020,00

(
Why Domain Models?

¢ Widespread belief that reuse is enhanced if done in small,
specialized areas

Slide 5 e Software is naturally partitioned into “domains”
e Modeling a software domain structuraes the collection of assets

¢ Domain model forms skeleton for library architecture

e Domain information can be used to aid asset retrieval and more
genaral kinds of asset processing

Domain knowledge must be put into the hands of engineers who are building systems in
that domain. However, different categories of users may in fact require different views of the
information. Domain analysis is a kind of knowledge engineering and a general discussion of
this topic is beyond the scope of this orientation package. However domain analysts must
have a keen sense of who their user community will be and must organizc the information
appropriately. The scheme to store and represent domain knowledge should be powerful, yet
flexible.

The cornerstone of the RLF approach to supporting reuse is the defirition and presentation
of supportive domain model information to serve the needs of library users.

Page 4

February 1993

STARS-UC-05156/020/00

Slide 6

What is Modeling?

Modsling is a process of organizing knowledge about a
domain (a specific portion of reality/thought)
e Define The Domain.

You must decide exactly what your domain is. You must
know or learn something about it.

o Organize Domain Knowledge.
You can know a lot about the domain and still find yourself
very challenged. Domain information must be recorded
and categorized.

SLIDE ' indicates some characteristics of models that explain their importance. A model-
based approach is needed to support reuse because reuse embodies a shift in the way that
software engineering is done. Rather than employing the common mindset that assumes
that design is a response to a specific set of requirements, a reuse mindset adopts a balanced
problem - product - process point of view. System development takes place with a clear
grasp of the available software assets that exist within a specified scope of applicability (a
domain). A domain model is a way of articulating the intended scope of reuse for a given
set of software assets.

r

Slide 7

Important Model Characteristics

¢ Formal and Representable
Models can clarify, abstract, and organize
knowledge about a domain.

¢ Machine Processable

Tool support enables automation of tasks and

Knowledge-based tool support enables
reasoning about the domain.

Page 5

“ebruary 1993 STARS-UC-05156/020/00

Tool support is necessary hecause effective reuse will often take place in circumstances that
stress a person’s intuitive limits in handling complexity. For these situations, modeling
techniques must be able to capture the complex semantics of the domain. In particular,
sub-system level reuse can be very successful because a greater proportion of an application
is built with reused components. Such reuse requires a modeling capability that describes
the aggregate collections of components into systems.

3 STARS CFRP

Domain analysis and subsequent modeling are activities that fall within a Reuse-Driven sys-
tem development strategy that is addressed by the STARS Conceptual Framework for Reuse
Processes (CFRP). This framework is not a life-cycle model; rather, the CFRP provides a
comprehensive checklist of reuse processes that are meant to work together syrergistically
and lead to a transformed system development paradigm. SLIDE 8 provides a high-level
view of the CFRP and SLIDE 9 lists some of the subprocesses that fall within each of the
major categories of te CFRP.

r

Assets ' Software
Systems

Slide 8

Assets

Organization

Context FIAMAC

Page 6

February 1993

STARS-UC-05156/020/00

Reuse Management Reuse Engineering
¢ Rouse Planning & Asset Crealion
~ Assessmont - Domain Analysis and Modeling
- Directicn Setting - Software Architecturs Development
- Dumain Selection - Applcation Generator Development
~ [Iofrastructure Planning - Software Component Developmeat
~ Project Planning ~ Asset Evolution
¢ Reuse Enactment o Amet Mansgement
- Project Management - Asset Acquisition
- Infrasuucture Implementation - Asset Acceptance
Slide 9 @ Reuse Learning - Asset Cataloging
- Process Observation - Asset Certification
- Process Evaluation - Asset Metrics Collection
~ Innovation Exploration - Library Operation
- Enbancemeat Recommendation - Library Data Modeling
- Library Metrics Collection
- Library Evolution
& Amset Utilization
~ Asset Requirements Determination
- Asset Identification
- Asset Selection
- Asset Tailoring
- Integration of Assets with Application

Reuse-based management as captured in the Plan/Enact/Learn idiom and reuse-based engi-
neering as captured in the Create/Manage/Utilize idiom provide both process and product
evolution strategies as depicted on SLIDE 10.

(

P/E/L Proce3s idiom C/M/U Process Idiom
REUSE-BASED MANAGEMENT: | REUSE-BASED ENGINEERING:
PROCESS EVOLUTION PRODUCT EVOLUTION

Slide 10

PLAN LEARN

.CREATE
l MANAG

o

FHACY

UTHIZE

With respect to domain analysis and modeling, the Enactment and Planning activities are of
particular interest within the CFKP. SLIDE 11 provides an expanded view of the planning
activities and snows the resources which are taken into account by these aciivities as well
the preducts produced by them. For the most part, these are higher-level activities which
are beyond the scope of this orientation package. An organization must, however, consider
these activities in putting together a reuse plan that will be effective for the organization.
To some extent, this plan will be driven by business decisions and will include selection of
domains which support those decisions.

Page 7

February 1993 STARS-UC-05156/020/00

Slide 11

\
Market Forces \\

In particuiar, domain analysis intersects broadly with the planning activities of assessment,
direction setting, and of course domain selection. Moreover, the creation of a domain
model is an important aspect of infrastructure planning. Domain selection is an impor-
tant first step to conducting a successful domain analysis. Domain selection should take
place in an expanded reuse planning context. In fact, domain selection is as much a man-
agement /business/strategic decision as it is an engineering decision.

There are many processes that specifically address domain analysis within the area of reuse
planning. Some of them are summarized ia SLIDE 12,

Page 8

February 1993 STARS-UC-05156/020/00

r
Key DA Planning Activities

¢ Reuse Assassment
- |dentify Organization Domains

= Characterize Domains

e Direction-Setting

Establish DA Objectives

Slide 12

e Domain Selection and Planning

- |nfrastructure Planning
* Select DA Modeling Techniques
* Select Domain Engineering Technology
= Project Planning
Configure Asset Craation Projects

The following bullets expand on the issues raised on the previous slide.

o Reusc Assessment

— Organizational Assessment - ties into Reusability Analysis
— Domain Identification and Characterization — conducted in a different context
from Organization Characterization

¢ Direction-Setting

~ Domain Aualysis Objectives -- in light of

* Overall organizational objectives
* Organizational Reuse Objectives

— Domain Metrics/Criteria for Success

— Select Domain Analysis Methodology
o Domain Selection — Different organizational contexts for domain selection criteria

— Technical criteria

* Stability of domain technology

Page 9

February 1993 STARS-UC-05156/020/00

* Maturity (e.g. number of systems implemented and length of time fielded)
* commonality across applications

* performance constraints

* flexibility of user requirements to accommodate reused resources

— Organizational criteria

* Strategic interest in domain
* Availability of expertise

* Ability to form domain engineering team for this domain (i.e., how much does
it cut across current organizational structure?)

Similarly, SLIDE 13 expands upon the enactment process. Domain analysis and modeling
enable construction of valuable reuse-support structures which aid a successful reuse-based
approach to system development. Not only are assets created, managed and used in the
development of a new system, but the knowledge about these assets and the relationships
among them also undergoes an analogous kind of Create/Manage/Use engineering activity.

Slide 13

Domain analysts build models. These models help engineers understand the application
domain and any existing assets that can be applied to constructing systems within the
domain. The models are themselves valuable assets that must be maintained and modified
(i.e. managed). Asset managers may need to maintain multiple models and update them
as required. Users (i.e. Application engineers) make use of the models in making important
decisiuns about how to develop solutions to the problems being addressed by the system
under development. Thus, not only are the assets used, but the models are used as well
to understand how to make effective use of the assets. SLIDE 14 lists some of the relevant
activities.

Page 10

February 1993 STARS-UC-05156/020/00

C/M/U and Domain Analysis

o Asset Creator

- domain analyst
» bulids domein models

- domain engineer
» buiids components
» adds/olassifies componunts w/in domain modet
= validates components wrt mode!

Slide 14
o Asset Manager

= Asset Qualifier/Cartifier

- Asset Cataloguer

= Library Mode! Maintenance/Evolution
- Usage History Monitor

-~ Promotion of Assets/Commissioning New
Assets

o Asset Utilizer

With respect to the RLF, asset creators make and modify RLF models while asset managers
administer and maintain them. Asset users browse and query RLF models and invoke
applications which make use of them. However, asset creators will also find themselves in
the position of model users (e.g. obtaining, incorporating and tailoring already-built models
of subdomains) while asset users may help create modified RLF models (e.g improved rule-
based heuristics, or identify gaps in model coverage and asset availability).

The creation activity is broken out further in SLIDE 15. In particular, domain analysis can
lead to key decisions about how assets can be created (e.g. composition vs. generation) and
an on-going effort to improve domain information can lead to transitions between forms of
asset support ~ e.g. from custom construction of subsystems, to (semi-)automatic composi-
tion of systems from available components to parameterized generation of components and
even entire systems. Not only are assets undergoing an evolutionary process, but so to are
the models.

Page 11

February 1993 STARS-UC-05156/020/00

r

Slide 15

Note that architecture development is distinct from domain modeling per se. A domain
model represents commonality and differences within the “problem space” of the domain
(system features), whereas the architecture represents alternatives in the “solution space”.
Architectures that are supportive of reuse differ from ordinary system architectures in that
they might include generative components as well as constructive.

There a number of domain analysis activities within the Create category of the Enact idiom.
These activities produce a wide variety of domain engineering products. These activities are
summarized on SLIDE 16 and the products produced by the activities are enumerated in
the list following the slide.

Page 12

February 1993 STARS-UC-05156/020/00

~

Key Domain Analysis Activities

o Domain Definition

e Domain Scoping

Slide 16 e Domain Information Gathering
e Domain Modaeling

e Domain Model Validation

¢ Domain Refinement

¢ Domain Engineering

The following bullets expand on the activities listed on the previous slide and show some
possible resulting products. The last item on the list, domain engineering, corresponds to
“architecture development” identified on SLIDE 15.

o Domain Definition

~ Domain Definition Statement (intensional)
— Domain Exemplar Set, chosen from a range of systems
* Implemented/fielded systems

* Requirements for new systems
* Market studies - forecasts
-~ Domain Genealogy - Different historical relations between systems
* direct successor system
* leveraged system
* requirements reuse (black-box)
* independently developed
* competitively developed

¢ Domain Scoping

— Domain Interconnection Model

* Operational Relations - e.g., Domains related through operational interfaces
in end-user system or through implementation relationships

Page 13

February 1993 STARS-UC-05156/020/00

* Specialization/generalization relations - e.g., outlining programs relate-to hy-
pertext programs; these domains are related not because one is used to im-
plement the other, or because they both co-exist and may even exchange
data in a single environment, but because one represents a superset of the
functionality of the other.

* Analogy domains
* Life cycle domains

— Domain Boundary Decision Report
o Domain Information gathering leads to a Domain Information Inventory!
e Domain Modeling

— Domain lexicon

— Requirements-Oriented Feature Model

— Models of environmental characteristics ~ often much reuse potential hidden
— Feature binding time model

— Error semantics model

— Feature Modeling Principles - Models can begin informally; as they scale up, their
semantics must become clearer; inheritance becomes more useful; feature model
should flag any functions not included in exemplar set

e Domain Model Validation — done along with information gathering, modeler should
verify terminology is in keeping with the application domain

e Domain Refinement

— Articulate domain boundaries
— Defer modeling of sub-domains

— Clarify individuals in each domain model

e Domain engineering — must integrate results of domain analysis with requirements
analysis; also, DA results stand on their own

The Domain Modeling activity in SLIDE 16 is most directly related to the core material of
this orientation. There are many kinds of models which can be produced during this activity,
including several for which the RUF provides a suitable representation medium. Some of
these models are on SLIDE 17.

'Techniques of information-gathering include searching databases, networks, technical communities
ethnography, participants observation of a single engineer’s grasp of problems in the domain, group
interviewing

Page 14

February 1993 STARS-UC-05156/020/00

f—eeer

Domain Modeling Products

¢ Domain Lexicon
Slide 17 e Requirements-Oriented Feature Model
e Models of environmental characteristics

e Feature binding time model

e Error semantics mode!

A semantic network model is sufficiently general and powerful to capture all of the model
types in the previous list.

4 Advantages of an RLF-like approach

As is evident from the previous discussion, a reuse- and models-based approach to system
engineering requires significant tool and infrastructure support. There are a spectrum of
techniques to apply to domain modeling and domain model representation. These approaches
range from semantically weak ones such as keywords to semantically strong ones such as an
objeci-oriented (O-O) approach. A list of candidate approaches is given on the next slide.

Page 15

February 1993 STARS-UC-05156/020/00

—

Domain Model Approaches

o Keywords

Slide 18
e Faceted Classification

¢ Structured Inheritance Network

e Object-Oriented

There are two main competing approaches that have received widespread use: faceted classi-
fication (which is a structured form of keyword-based techniques) and object-oriented (O-O)
classification. In fact, RLF models can be built which provide all of the features of a faceted
scheme. Moreover RLF shares several features with O-O techniques including support for
inheritance of properties (including multiple inheritance) and the specification of class (or
category) attributes.

The RLF with its semantic network, rule-based, and hybrid modeling techniques is well
suited to provide modeling support. It represents a semantically rich modeling medium
which includes most of the O-O features that are important to reuse, and leaves aside other
features that are not as useful for reuse. Some reasons to consider the RLF are summarized

in SLIDE 19.

Page 16

February 1993 STARS-UC-05156/020/00

—m

Why Use the RLF?

e includes all key features of Faceted Classification
facets and facet terms can be provided through RLF
relationships or fact base schemas

o shares key features with O-O modeling including (multiple)
inheritance, but

Slide 19 e doesn't require O-O design or programming approach

e separates model from application which uses the model
- different applications run over same modal

- different models accessed by samse application
e models maintain variants of subsystems at any level

o enforces semantic restrictions

e models as first-class objects, artifacts, assets

However, RLF models are not just O-O models, and in fact can be built for systems that
are designed and implemented without assuming an O-O programming paradigm. Whereas
0-0 techniques encapsulate behavior with classes and objects, this association may not be
appropriate for general reuse libraries. In fact, evidence suggests that “code inheritance”
may not be an effective way to support reuse. RLF models empower applications which
use the model in application-specific ways — there are no built-in assuraptions about how
systems built from the model are constructed. One can view an RLF model as a rich data
structure and RLF abstract data types provide the necessary interfaces to interact with and
manipulate the data structure.

RLF library models have a subset of O-O features that are most appropriate to support
reuse. The use of RLF semantic network models enables effective modeling of subsystem
variants at all levels within the model, and not just at the frontier portion of the model.

Domain modeling is a form of knowledge capture and a knowledge representation formalism
is required to encode and manipulate the captured information. The RLF provides two
complementary forms of knowledge representation. In the following sequence of slides, the
semantic network information subsystem called AdaKNET will be surveyed.

Page 17

February 1993 STARS-UC-05156/020/00

AdaKNET provides the basic supporting structure for an RLF library domain model. It

e encodes static aspects of a domain model
e provides structure for library
e describes reusable assets and their properties and relationships

e has scalable power of representation

~
Knowledge Representation

o System of formal conventions for encoding knowledge -- the
modsling vehicle

e The RLF uses AdaKNET as part of its Knowledge
Representation Scheme (KRS)

= based on KL-One (Brachman)

e AdaTAU is an auxiliary KRS

- Other auxiliary KRS have been used with AdaKNET including
CLIPS

AdaTAU contributes the following capabilities to the RLF:

e as an auxiliary modeling formalism, it supports those domains which require a less
formal representation

e can directly encode faceted classification schemes
“ » . . .
e can “grow” faceted schemes into more taxonomic models over time

e handles a simple interactive protocol for eliciting and processing less structured infor-
mation within the system

¢ provides means to reason about the model represented using AdaKNET

Page 18

February 1993 STARS-UC-05156/020/00

5 AdaKNET Semantic Networks and LMDL

Before considering the features of AdaKNET in depth, SLIDE 21 notes the distinction be-
tween the implementation of AdaKNET and the general modeling notation and examples
presented in the rest of this section. Much of the discussion in this section would apply to
any general semantic network system, including KL-One. The actual use of AdaKNET and
LMDL (Library Model Description Language) is covered in depth later in this orientation.

r

AdaKNET Principles and Notation

o Semantic network principles are introduced first

e Graphical notation is reused from original KL-Cne treatment.

= This notation is not supported in RLF tools
Siide 21 = RLF networks are specified textually and translated to machine representation
= RLF Graphical Browser displays networks as trees with replicated nodes

o Designers can use sketches like those presented here to design
models incrementally

o AdaKNET graphical model editing tool is a potential future
enhancement

As an indication of the different representations of network structures used in this tutorial,
the next three slides show a KL-One style view, an RLF_GB style view, and an actual
LMDL network textual specification for a simple network model. Both the KL-One and
LMDL notations are used extensively in the tutorial. The RLF_GB notation conventions
are treated more completely in the RLF User Tutorial.

Page 19

February 1993 STARS-UC-05156/020/00

f
KL-One Notation

RLF GB Notation

Slide 23

February 1893 STARS-UC-05156/020/00

[LMDL Notation

library model "Mammal Xodel® is

root category mammal is
end root category;

catagory yak (mammal) is
and category;

category dog (mammal) is
end category;
Slide 24
category cat (mammal) is
end category:

object *Lassie" (dog) is
end object;

object *Rin Tin Tin®" (dog) is
end object;

object *"Snoopy" (dog) is
end object;

end *Mammal Model®;

Semantic networks are also known as structured inheritance networks (SLIDE 25) because
information located at one node of the network is inherited by those nodes of the network
which are descendants of that node. In particular, links to other parts of the network
established for a parent node are inherited by child nodes, although those links can be made
more specific (constrained) as examples to follow will show.

Page 21

February 1993

Slide 25

STARS-UC-05156/020/00

(
AdaKNET

e AdaKNET provides a language formalism -- LMDL
A formal language enables the clear and
precise definition of modsl features

o AdaKNET is a structured inheritance network

Such netwoerks provide an economical and

practical representation of category and object
relationships

There are five main features which determine the ability of AdaKNET to represent knowledge
which are shown in SLIDE 26. These are discussed in the followirg slides. In the course
of explaining AdaKNET modeling, various model diagrams will be drawn to help illustrate
AdaKNET features. The next slide summarizes the basic capabilities of AdaKNET.

Slide 26

-
Basic Features of AdaKNET

e Categories
e Objects
e Individuation
Category Membership

e Spaecialization

Specific-General (I1S-A) relationships

e Aggregation
Whols-Part (}:AS-A) relationships

SLIDE 27 illustrates the notational conventions used in these diagrams — they are similar to
those used in the general literature to present and discuss semantic networks.

Page 22

T L

February 1993

Slide 27

STARS-UC-05156/020/00

ip,f.ﬁ?m tion Category or Object Oval
Relationship Arrow
Individuation __..@ .
Arrow
Filled Relationship Arrow

Categories (a.k.a. concepts) provide the means to model general classes or kinds of things.

-

Concept

a.k.a. generic concept
category
class

Represents concreta things or

abstract categories

The following slides show some categories that are appropriate for a model of the sorting

domain.

Page 23

February 1993 STARS-UC-05156/020/00

SortingAlgorithm

Siide 29
Category Examples
(
Exercise 1
Slide 30

Create some concepts for the domain of ...

Objects (a.k.a. instances or individuals) model category instances — particular things.

Page 24

< AN N O I T TR V‘m;f.ﬂ“‘_g, T TCYRY hreadas ,»;)‘_‘_WI AL EACTN '“-,‘—Hf I Ty ;.J\“ IS HEY:Y jnzl.r‘,_ ,igﬂ\(u;g[‘-l‘\'(-.;_7\”,9 A'[‘Ilgx.zrﬁ"g-’." AL F' . “l‘ Wt) e
g PR R esla b [R& R " E

February 1998 STARS-UC-05156/020/00

——

r
@9 Individue!

a.k.a. individual concept

Slide 31 obje ot

instance

Represents a specific instantiation of

a category

Object membership in a category is represented by an “individuation” link. Objects are
sometimes referred to as individuals. Objects receive their essential identity from their

relationship to the containing category.

’V

Representing Individuation

Individuation Link
Slide 32 this link is usually drawn pointing up

it is always drawn from an irdividual
to a concept

indicates that the individual is an
actual instance of the idea
reprasented by the concept

The ne:xt slide shows two examples of objects linked to their parent category.

Page 25

February 1993 STARS-UC-05156,/020/00

InternalSort DataStructure
PN
Slide 33
HeapAda Array

Simple Individuation

Note that it is not always clear when an idea (an intellectual concept) is best represented as
a category or as an object in a semantic network. There are situations where both may seem
to be possible and the circumstances surrounding the application of the model may tip the
balance in favor of one or the other. For example, Array is represented as an individual cn
the previous slide; in some situations Array may be best represented as a generic concept
(category) with many specializations. For reuse library applications, SLIDE 34 suggests a
generally useful viewpoint on distinguishing generic concepts and individual concepts.

Categories vs. Objects
e A generic concept represents a category of assets or
information type used to distinguish assets

® An individual concept (object) represents a particular
asset or elemental piece of information about assets

2 SATRIME A B S FE s bl TR Al e R 1 L C R IR A NNER AN AR R
ks R . R N :

February 1993 STARS-UC-05156/020/00

Exercise 2
Slide 35

Create some objects for the categories you
created in exercise 1 in the domain of ...

Category/sub-category relationships are captured as specialization links in AdaKNET net-
works.

r
Representing Specialization Relationships

Specialization Link

a.k.a. ‘is-a' link
Slide 36

indicates the "lower" concept is a
narrowing of the category represented
by the "higher" concept

link is usually drawn pointing up

it is only drawn between concepts

h

Page 27

February 1993 STARS-UC-05156/020/00

SortingAlgorithm AttributeValue

r

Slide 37
Simple Specialization
(
Exercise 3
Slide 38

Create some specializations of the categories you
craated in exercise 1 in the domain of ...

Properties of categories are provided through aggregation links. These links allow category
relationships to be expressed that provide whole-part information or further define category
characteristics. Adaknet roles (as these aggregation links are called) have three distinctive
parts as shown on the following slides.

Page 28

February 1993 STARS-UC-05156/020/00

r

Representing Aggregation Relationships

a.k.a. 'has-a' links, roles, rolesets,
relationships

Stide 39 Usually represents either a
part-subpart relationship
(e.g. "car has-a engine")

OR

a characteristic
(e.g. "car has-a color")

Each role is identified by a name, a range (the number or times the role can be repeated for
an individual) and a type which identifies the nature of the role.

f

Representing Aggregation Relationships (cont)

Aggregation links
3 parts:

Slide 40
name has-leg

range (4..4)

type leg

An RLF model designer should pick useful and informative names for aggregation links.

Page 29

February 1993

STARS-UC-05156/020/00

(

Slide 41

name - generally a verb which indicates

the nature of the relationship

Representing Aggregation Relationships (cont)

The designer must also establish bounds on the number of anticipated repetitions of each
role as well as the basic kind (type) of information being captured by the role.

Slide 42 . .
exist simultaneously

(min.,max.)

eg. (1..1)

Page 30

Representing Aggregation Relationships (cont)

range - a numeric range indicating how

many copies of the relationship may

Range is an ordered pair:

(0..infinity) (4..5)

February 1993

Slide 43

STARS-UC-05156,/020/00

r

Representing Aggregation Relationships (cont)

type - generally a concept which specifies
what kinds of things can be used as

the value of this aggregation

relationship

The next slide shows a simple example of the definition of relationships provided by roles.

Slide 44

SourceLanguage '

writtenln
(0 inf) arn

Simple Aggregation

Page 31

February 1993 STARS-UC-05156/020/00

Exercise 4

Create some aggregation links for the

Slide 45 specialization hierarchy you have created in the

previous 3 exercises in the domain of ... At least
one of these links should represent a whole-part
relationship and at least one should model a
characteristic relationship.

The ability of a structured inheritance network to model domain information is actually
contained in the specialization (category to subcategory) and aggregation hierarchies which
form the infrastructure of the network. Aggregaiion information is inherited along the spe-
cialization hierarchy. Objects that instantiate a class require other objects that “fill” the
corresponding aggregation slots possessed by the category to which they belong. These
aggregation instances are called role “fillers.” In general, aggregation information can be
localized (restricted and decomposed) at lower levels of the specialization hierarchy. This
process is covered in the next several slides.

r

The Specialization Hierarchy

o Fundamental model properties are conveyed through
AdaKNET's specialization hierarchy

Slide 46 = provides taxonomy, conveptual decomposition, subsumption hierarchy
- categories are "declared” in the context of this hierarchy

o Subsume (Oversums)

To classify in a more comprehensive category or under a
general principle

Page 32

February 1993 STARS-UC-05156/020/00

f

Slide 47

Aggregation information is inherited along the specialization hierarchy.

r

Inheritance

e Whenever a category that “has aggregation” is specialized, that
aggregation structure is inherited by the more-specific (“lower

level") category.

Slide 48
o Roles are installed at the highest level appropriate.

e You can add new, local roles to any category, regardless of
whether it has inherited roles.

e Objects in category possess all roles of containing category,
whether locally defined or inherited.

SLIDE 49 provides a simple exaiaple where a relationship in a parent category is inherited
by a subcategory and the subcategory has its own local relationship.

Page 33

February 1993 STARS-UC-05156/020/00

(

Algorithm

Slide 49
Relationships are Inherited
(
Exerclse 5
For the model fragmant you have been
Siide 50 developing in the previous exercises, install new

roles if nacassary and then show at least category
with a role which is inherited from a parent
category as well as role declared iocal to the
category.

In fact, AdaKNET permits a limited form of multiple inheritance.

Page 34

February 1993 STARS-UC-05156/020/00

Slide 51

r
Multiple Inherltance

¢ AdaKNET supports multiple inheritance -- categories can have
more than one parent category

¢ Usually this means that the spacializing category inherits the
relationships of all its parents, but:
= parents have common ancestor, thus common relationships
The intersuction of the available relationship restrictions from both
parsnts are imposed
- parents have different relationships with same name
This situation Is not allowed in AJaKNET

The next slide shows a simple example of multiple inheritance where the inherited relation-
ships are distinct. Note that multiple inheritance is often useful in AdaKNET models because
different access paths to an object or category may support different classes of users. In the
RLF, an object may be declared to have multiple parents - it is not necessary to declare an
intermediate category for multiple inheritance to occur.

Siide 52

Mulitiple Inheritance

When a relationship is simultaneously inherited from multiple categories, it is necessary to
merge the range and value restrictions of the relationship so that it continues to describe

Page 35

February 1993 STARS-UC-05156/020/00

both parent relationships. The relationship’s range must be the largest possible range that
falls within all the parents’ ranges for the relationship. Similarly, the relationship’s type
must be the same as or subsumed by all of the parents’ types 1or the relationship. If a
range or type meeting these criteria does not exist, the inheritance is not possible without
violating subsumption, and the specialization is not allowed. The library model specification
translator will report an error when constructing the library model representation and abort.

Any parent relationships which have the same name but do not descend from a common
ancestor are distinct relationships. In order for these relationships to be inherited by a
single concept, the name conflict must be resolved by renaming one of the relationships
before the child concept can be created. This should be done in the LMDL specification for
the library model.

Users just beginning to create models in RLF should carefully evaluate the need for multiple
inheritance. Multiple inheritance is not used in the rest of this orientation.

As role information is inherited, it cau be made more specific, but it can never be generalized.
Roles can be narrowed in terms of cardinality (the number of permitted repetitions) and role
type - at a subcategory, there may be fewer repetitions and/or the type of role filler may
be restricted to a subtype of the original role type. These strict subsumption semantics for
AdaKNET distinguish it strongly from most O-O approaches.

7

Narrowing Roles

e inherited roles can be left unmodified or they can be narrowed.

e Two ways to narrow an inherited role:

Slide 53
g ~ Narrow the type

new type must be a specialization of the original type

-- Narrow the range
* You can decrease the range, not increase it
* You can converge the range, i.e. make max. = min,

The next slide shows a simple example cof relationship restriction where the relationship is
restricted both by type and by range.

Page 36

.

February 1993 STARS-UC-05156/020/00

SortAlgorithm

DataStructure

Slide 54
ArraySort
(a1
\ Narrowing Relationships
(
Exercise 6
Slide 55 For the mode! fragment you have bean

developing in the previous exercises, show
examples of role restriction that narrow the type
and the range of an inherited role.

Role different’ation is a kind of specialization for roles:

e subsetting - splitting cff a part of a role (but perhaps leaving some parts of the original
role alone), and

e partitioning - splitting a role completely into disjoint parts

Fage 37

February 1993 STARS-UC-05156/020/00

(

Role Differentiation

o Differentiation allows you to divide a role into & set of subroles.

e Two ways to ditferentiate a role:
= Patitioning
rols divided into & 83t of subroles and each filler must be assigned to
exactly one subrole (nn further role differentiation possible)
« Subsetting

role divided into a st of subroles and each filler cen be associated
with zero or more of them (subsat roles can be further difierentated)

The next slide shows a small example of relationship subsetting where a relationship is de-
composed into two named relationships which do not partition the original relationship. This
orientation will not consider differentiated relationships further as they are more appropriate
for complex modeling situations. The RLF Modeler’s Manual provides should be consulted
for more information.

(

Slide 57

The following slide ic a small but representative example of a model built using AdaKNET
principles. In the hands-on session to follow, the development of a software model will be

Page 38

February 1993 | STARS-UC-05156/020/00

undertaken thet further illustrates the principles discussed above. Note that in this and
subsequent network illustrations, objects are not drawn with double ellipses enclosing them
since the use of the lined arrow for an individuation link normally makes in clear that the
node represents an individual class member aud not a subclass.

(

Slido 58

Actual RLF networks are created from network description files in a specification language
called LMDL - Library Model Description Language.

(

Library Model Description Language --
LMDL

Siide 59 o Ada-like non-procedural language
e Specifies all objects and relationships in the model
e Is translated to produce files which represent the model

e Is modified and re-translated tc change the model

Page 39

February 1993 STARS-UC-05156/020/00

A survey of the usage and features of LMDL is presented in the third major part of this
tutorial.

6 Model Hybridization

The actual contents of an RLF library are located relative to categories modeled in an RLF
network. But the storage of these contents (typically as file objects) and the processing and
manipulation of these contents are provided by additional RLF features layered on top of
the network. One simple kind of asset processing is the simple display of text file assets in
a window on the library user’s display screen.

Another kind of asset and library model processing is provided by the AdaTAU inferencing
system which is also layered on top of a basic network model. Inference bases can be used
to set up and control complex library interactions that are themselves examples of sophisti-
cated asset processing. One example of such processing is system configuration whereby a
subsystem is assembled, at least semi-automatically, from assets that are individually stored
in the library, possibly after the assets are tailored to user requirements elicited during the
inference process.

The attachment of AdaTAU inference components, the location of asset files, the storage
of additional asset state information (e.g. numeric or text-string values and longer textual
class or object descriptions stored in files) and the specification of RLF “actions” to process
assets on an individual basis are all currently provided as extensions to the LMDL language.

This additional layering, and the binding of AdaTAU inferencers to particular AdaKNET
classes and objects, is called “hybridization.” Hybridization allows a text item, an integer
item, a file item, or an inference base to be associated with an AdaKNET category or
object. Moreover, RLF actions allow the internally provided RLF “inferencing” action to be
augmented by other large-grained asset processing services.

February 1993 STARS-UC-05156/020/00

RLF Hybridization

o Allow a text item (string or file), an integer item, a general file
item, or an inference base to be associated with an AdaKNET
class or object.

Slide 60 e The actual file for a software component can be bound as a text
file to an object.

¢ RLF graphical brows:ar allows for viewing of associated files
(and in general for @xecution of RLF actions).

o Allows inferencer supiport to be contaxt-sensitiva.

o Switches between in‘erence bases make moves through library.

_

RLF attributes are used to annotate categories and objects with static information that
provides additional data about them. Attributes are the means by which actual file contents
are attached to reusable assets which are modeled as objects in an RLF model. SLIDE 61
illustrates some basic features of attributes.

(

Attributes

e can be integers, strings of characters, or files

e have names so they can be referenced and used by
Slide 61 RLF actions

¢ file attributes cai be viewed, extracted, or otherwise
manipulated

e attributes are not inherited -- they must defined at
each category or object where they are useful

h“—-

The next slide introduces a companion knowledge representation system to
AdaKNET. This subsystem is called AdaTAU (TAU stands for Think - Ask - Update) which
is the basic process by which new facts are deduced from a current set of facts through a

Page 41

February 1993 STARS-UC-05156/020/00

process of rule selection and execution. AdaTAU features and basic operation are elaborated
on later in this package. The main usage of AdaTAU has been to “program” a user’s
interaction with a domain model and to direct the user to the completion of specific tasks
that the domain model supports. Possible uses include assisting a user to:

o navigate an AdaKNET model
e compose & system from objects in an RLF-based library

¢ enter and qualify new objects within an RLF-based library.

In addition, other kinds of inferencing support have been added to models defined using
AdaKNET. NASA’s CLIPS inferencing system has been integrated with AdaKNET by the
CARDS program to support system composition from library cornponents.

r

AdaTAU

e Ruie-based inferencing engine

e Rule bases defined in RBDL -- Rule Base Description
Language

¢ Inferencing can be distributed in ditferent areas (e.g. nodes
of the network)

e Captures per-usage, dynamic, non-structural knowledge

e Tailors advice to the orientation and goals of user

o Intaracts with the user to gather per-usage information

e Based on responses, make deductions about model
elements and contents that are of interest to the user

e Can focus user to spacific category or object

¢ Requires additional knowledge modeling

February 1993 STARS-UC-05156/020/00

7 Asset Processing

In addition to the bnilt-in notion of processing inference bases via AdaTAU, the RLF per-
mits the modeler to introduce either internal or external model processing elements called
Actions. Some basic facts about actions are listed on SLIDE 63. Actions let the user
process categories and objects and permit access to system and library resources within
a context appropriate to specific categories and objects. The context for these actions is
provided by RLF attributes. In particular, RLF actions provide the mechanism by which
library assets can be processed. Two simple kinds of asset processing are asset viewing and
asset extraction.

(

Actions

o provide library users with appropriate system and library services
e basis for asset viewing and extraction

o defined within LMDL speciications -- sample Action sub-modal
provided in RLF distribution

¢ implemented as system calls, or internal Ada procedures

Slide 63
¢ inherited like relationships

¢ have names, an action category, a list of action targets, and a list
of action agents
- targets referance attributes which provide input for the action
« agents reference attributes which affect how the action is performed

o can he privileged which means they are unavailable through the
RLF GB (restricted to administrative use)

e can be restricted at subcategories or lower level objects

Rather than provide a set of built-in actions and provide a inechanism for augmenting this
list with user-defined actions, the RLF makes no assumptions about the set of actions that
might be nseful to the medeler who is supporting a given community of users. All action
processing is established through an action sub-model created using LMDL. As a guide to
the creation of models wit actions, some of the sample models included with the RLF release
contain a sample action sub-model. This model is shown graphically on SLIDE 64.

Page 43

February 1993 STARS-UC-05156/020/00

Slide 64

RLF network specifications include the declaration and use of Actions in order for model
state information to be processed in a manner consistent with the type of state information,
and to afford the opportunity for the RLF to provide larger scale asset processing. As
shown in the previous slide, actions are declared as AdaKNET categories within a LMDL
specification, but the graphical browser does not display them as categories since they are
not used to model the domain, but rather to set up asset processing and manipulation within
the domain model. This information may be confusing to an engineer using the graphical
interface to interact with the library. SLIDE 65 identifies some library services that can be
provided through action specifications.

r

Action Applications

e Execute tools
o View code

e Extract code

e Send mail

e Run prototypes

e Generate components

Page 44

G
b

February 1993 STARS-UC-05156/026/00

The library modeler should use one of the sample action sub-models as a starting point for
defining the set of actions that will be made avaiiable to library uc~rs. As srefact-graph
shows, there will be a top-level action category defined at the top of the library model
(immediately below the root category). The RLF GB interface automatically suppresses the
sub-network below the Action Definition category.

SLIDE 66 shows a LMDL description for the top-level of the action sub-model whose graph
is shown in SLIDE 64.

r

Top Level Action Spec

category "Acotion Definition" (thing) is
ond category;

category “Acotion Type" ("Action Nefinition) ie
ond category;

category “"System string" (“Aotion Type®) is
and category;

gategory "Ada Procedure® ("Action Type") is
end category)

Slide 68 category "Message Fass® ("Action Type") is
ond category)

category Action ("Action Definition") is
selationships
has_action_type (1 .. 1) of "Action Type™;
opd relationships)
ond cutegory;

category View (Action) is
restricted relationahips
has_action_type of “System String",
end restrioted;
attridbutes
otring is "xterm -e SRLP_PAGER #§ &™)
end attributes)
ond category:

This specification shows the definition of a View action that enables the display the contents
of a category or object which has textual state (e.g., the contents of a code file asset). Such a
subcategory definition is required tor each of the actions that the modeler wiskes to include.

For an action provided through an OS-level command - identified as an action type of
System String — the command to pass to the OS must be defined as a string attribute
aloug with place holders for the arguments to be passed to the system command when the
action is invoked. The string for the View action is also shown in SLIDE 66. In this
example, the place holder is marked by the characters ##. The character & is part of the

Page 45

Slide 67

February 1993

STARS-UC-05156/020/00

system command indicating that the system command is to run as a background process.

Once a collection of actions has been defined in a sub-model as is shown above, their use
within the library model is specified via a collection of related attribute and action definitions.
A small model fragment will be used to help explain this connection.

The slide sequence in the rest of this section illustrates the process of attaching asset contents
to an existing model. A model fragment is shown that describes the fact that code assets
have authors and reviewers and we wish to capture the text of an actual code asset within
a library using this model.

r

Created Date
(1.1

Submitted Date {
1.9

Sort_1 is an individual asset which carries with it some internal state, including the source
code which implements the asset.

Page 46

) ST T TR T e TR D R T W U O e AT, AR R S AR e e e T

February 1993 STARS-UC-05156/020/00

r

Individual - Example

Sort_1 is the asset with

adthor = Jim whose reviewers
Slide 68 Jare all members of the QA staff,
one of whom is Hal and one of

whom is Jill and whose contents

are in the fila sort_1.a

LMDL includes the ability to attach such internal state to an AdaKNET entity (category or
object) and RLF actions (set up via LMDL declarations as shown above) are made available
to the user to process this state. The file containing the source code for an asset is identified
via an attribute of the asset category.

The various relationships that an asset is involved in are represented via filled relationships
that connect the asset to other objects in the model. For example, the author for Sort.1 is
Jim. This filled relationship is shown on the next slide. There are two reviewers identified
for this asset — this information is also captured by filled relationships as shown in the slide.

February 1993 STARS-UC-05156/020/00

SLIDE 70 gives a LMDL fragment which shows some of the LMDL clauses required to declare
Sort_1 and to provide file contents for this asset.

(

Sort.1 LMDL Specification

object Sort_1 ("Code Asset*) is
restricted relationships
Reviewer (1..2) of "QA Staff*;

and restricted;
fillers
Jim satisties Author;
Hal satisfies Reviewer;
Slide 70 J111 satisfies Reviewer;

end fillers;
attributes
file contents is "sort_l.a*;

end attributes;
actions
*Vview Source" is View on contents;

end actions;
and object;

SLIDE 70 makes the connection between the contents of the asset object (stored in the file
sort.1.a) and the action to view the contents. This action is given the name View Source
and is implemented via the system string defined as an attribute to the View action. The
actual input for this action is provided by the contents attribute of Sort_1. The file name
defined by this attribute is substituted at the location identified by the action placeholder
when the action is selected by a library user who wishes to examine the contents of the
Sort.1 object.

Note that the action declaration shown on SLIDE 70 actually binds together the action with
the state which the action is to process. The state is named in a LMDL attribute declaration
which in many cases identifies a file that contains the state. This file must be supplied as
an input parameter to the text of the action call.

This two-way connection is highlighted on the next slide. Note again that the slot in the
action string where textual input is required is indicated by ‘##’. When the action is

Page 48

February 1993 | | STARS-UC-05156/020,00

executed, the corresponding string value from the object provides the substitution for this

placeholder.
(
Making Action Ccnections
Action at the visible object Sori_1:
*view Source® ig View on contents;
Slide 71

Atiribute at the invisible action View:

string is *"xterm -e SRLF_PAGHR ## &";

Selecting the View Source action brings up a viewer on the
contents defined for the objact. ## is a placeholder for the
file name location of the contents.

The next slide notes the inheritance properties of actions and points out that the attribute
to be processed by the action must be separately declared for each category or object for
which the action can be meaningfully applied. Thus while actions are inherited, the targets
for actions are not inherited.

7

RLF Action Inheritance

o Like relationships, actions are inherited down the specialization
hierarchy

Slide 72 e Actions should be declared at most general category for which
aciion is meaningful

e Attributes which are action targets are not inherited

e Aciion targets must be declared locally to each category or
object for which action is meaningful

As an example of how to effectively use action inheritance, the view action defined above

Page 49

February 1993 STARS-UC-05156/020/00

for Sort.1 can be declared instead at the Coce Asset category. All objects which belong
to this category will have the view action defined for them. The contents attribute must
be declared separately for each object which has contents. The RLG GB will only offer the
action at those subcategories and objects which actuelly define the attribute. SLIDE 73
shows a partial specification with an action defined without a locally defined target.

r
Code Asset LMDI. Specification

category "Code Asset® (Asast) ls
relationships
Mthor (1..1) of Person;
Reviewer (1..inf) of Person;

end relationships;

rastricted relationships
"Submitted Date®" (1..1) of ... ;

Slide 73

Ide "Crested Date® (1..1) of ... ;

end restricted;

attributes

end attributes;
actions

*View Source® is View on contents;

end actions;
end category;

_

The final step to creating models which use actions is to locate the attributes which provide
inputs for the actions (files) in a place where the browser can find them. The RLF environ-
ment variable RLF_LIBRARIES is used to declare the base path name, and the state files must
be located in a fixed location relative to this path as shown in SLIDE 74. The files can be
physically be copied to this location or installed via the use of symbolic links.

February 1993

Slide 74

STARS-UC-05156/020/00

Locating File Attributes

¢ RLF_LIBRARIRES defines a relative locaiion for all file state
e Files are located in the SRLF_LIBRARIES/Text subdirestory
o Files can be copied or linked to this location

e if multiple libraries are in use, a named subdirectory of
SRLF.LIBRARIES/Text can be used

¢ Attribute declaration in LMDL must name the subdirectory

o ECG.file source is

“pgort.and search/shaker.sort_.a";

8 Modeling Suggestions

The next few slides address some basic modeling issues and suggested practices that prospec-
tive RLF modelers should be aware of. These are summarized on the following slide.

Slide 75

Modeling Issues

e Model Evolution
e Naming categories, objects and relationships

o Representation choices

e Model Usage Goals

A suggested approach to take in the creation of RLF models is to start small and gradual'y
evolve the model by adding detail. Since the models are meant to support users, it is useful
to get intermediate versions of models in the hands of users and to solicit feedback from

Page 51

..

February 1993 STARS-UC-05156/020/00
them. As will be shown in the next few sections of this tutorial, it is relatively easy to define
a model and use the RLF GB to see it in action.

One important aspect of model evolution is the creation of intermediate specializations. The
next slide outlines some useful cases to consider.

Intermediate Specialization

e Question linear mode! fragments (e.g. Z specializes Y, and Y
spacializes X)

= what is rationale for intermediate category Y?

= are there objeots in category Y that are not in 27

Slide 76 = wili model later include other categories of Y?

- will objects in Z also belong to other categories unrelated to X

e Provide rationale for specialization hierarchy choices

e Choose carefully whether information should be modeled in
specialization or aggregation hierarchy

¢ Reconsider categories which contain only single objects

Naming model elements is somewhat a matter of personal taste. Nonetheless, the next slide
provides some suggestions that have proved useful in prior modeling activities.

-

Naming Suggestions

e Don't get hung up on choosing perfect names -- mcdel iteration
and refinement of names shouid be expected

e Choose singular nouns as names of categories

Slide 77 e Choosa active verbs or action noun phrases as names of
relaticnships

e Avoit hame repetition between relationship name and
corresponding relationship type
sometiines duplication is hard to avoid

e Accept that choosing names car be surprisingly challenging

Page 52

" February 1903 STARS-UC-05156/020/00

The next slide illustretes a common naming dilemma.

e
Naming Subtlety

Siide 78

Making representation choices can be especially troublesome for beginning modelers. There
are often many fuctors to consider, and the modeler can have difficulty in deciding which
RLF model building component to use. The next few slides illustrate some of these choices
and view points to be taken.

7

Representation Chaoices

e Categories vs. Relationships
Slide 79 . :
o Relationships vs. Attributes

e Problem space vs. Solution Space

e Functionality vs. Implemantation

The next slide shows out some candidate modci fragments that represent alternate ways of
capturing similar information.

Page 53

February 1993 STARS-UC-05156/020/00

Categories vs. Relatlonships

has gender
anbmal ay snimsl
L 43
gender
Slide 80 mule azimal fomale animal 75 bomen
o — 3
L 43 ndﬂu1
buman e men
restricw,
mau woman fomale weman

In the model fragment on the left, the notion of gender is bound up in the distinction that
animals exist as males and females. In the right model fragment, gender is extracted and
made a model concept in its own right. Other categories can then be given restricled gender
relationships to isolate male and female properties for those categories.

It is not always obvious how te model information that reflects category properties - both
relationships and attributes can be used for this purpose. The next slide identifies some
distinguishing features that may help in making modeling decisions. Relationships and
attributes provide complementary capabilities for the modeler.

Page 54

February 1993 STARS-UC-05156,/020/00

——

Relationships vs. Attributes

o Relationships are inherited; attributes are not inhetited
¢ Relationships can be restricted and ditferentiated

o Relationships are processed only by built-in AdaKNET
Slide 81 operations

e Atftributes are unstructured and isolated to specific categories
and objects

e Attribute information can be processed by external arid internal
actions

¢ Attributes are appropriate for long, descriptive properties

Another important distinction that the modeler should be aware of is that models ultimately
must support the needs of a community of users whose viewpoints differ considerably from
individual to individual, and from subgroup to subgroup. To illustrate this distinction,
the next slide considers model focusing from the dual perspectives of problem space vs.
solution space and functionality (features) vs. implementation. Models should always be
developed with a clear understanding of the intended usage goals of the model, and the kind
of application to be built ou top of the model.

Page 55

February 1993 STARS-UC-05156/020/00

Model Focus Considerations

e Problem Space vs. Solution Space
e "What is to be accomplished"” vs. “How to accomplish it"

¢ “Describing functionality and features” vs. "Describing
implementations”

Slide 82 e There can be many different levels or spheres of
: functionality

¢ There can be many different implementation alternatives

® Should mode! lead to a single solution (e.g. automatic
system composition) or support multiple soiutions (e.g.
human selection of system components)?

e Does model emphasize structure and features through
specialization hierarchy or through aggregation hierarchy?

9 RLF Model Creation

The rest of this orientation package presents auxiliary material to accompany hands-on
demonstration of the use of the RLF software to actually create and browse models. Except
for some necessary context-setting for the declaration of inferencers to augment a network
domain model, the discussion which follows is quite brief as it is written to provide annotation
for the demonstration.

These notes cannot convey the full process of conducting a domain analysis whereby do-
main information is collected and evaluated for the purpose of identifying an organizational
framework upon which a library of reusable assets can be figured. For the purpose of this
orientation, it is assumed that a library of sorting algorithms and sort implementations is to
be created and that a preliminary investigation of this application area (domain) has been
conducted. Standard data structures and algorithms texts provide a wriiten description of
useful information to help decide which of several sort and search strategies and implemen-
tations can be used. The model built here is an attempt to capture a subset of information
drawn from such sources and provide the means to help sort routine (re)users decide which

Page 56

February 1993

STARS-UC-05156/020,00

of several epproaciies to take.

The notes attempt to convey the process of rendering the evolving model using the RLF. In
particular, the model is presented in the stages indicated on the following two slides.

Slide 83

Slide 84

r
RLF Model Stages

e Build preliminary taxonomy -- show AdaKNET categories and
specialization hiwrarchy

e Evolve taxanomy

e Add properties and essential rel_ationships to taxonomy -- show
AdaKNET relationships and aggregation hierarchy

e Attach objects to appropriate locations within taxonomy -- show
AdaKNET objects and individuation links

e Provide object contents and object viewing capability -- show
RLF state and action mechanisms

RLF Model Stages (con

#® Review the model and expand/arrange as necessary --
complete network portion of model included in this tutorial
release

e Provide model usage guidance and user support -- show
AdaTAU inference base mechanism

o Complete full model definition

The RLF user must first set up an initial working environment. The steps necessary to do
this are discussed in the RLF VDD. In particular, the user must have access to the basic RLF
executables: RLF.GB, Lmdl and Rbdl and have established a working RLF data location

Page 57

February 1993 STARS-UC-05156,/020/00

identified by the RLF_LIBARIES environment variable. Object contents are stored in the
Text subdirectory of the location identified by this environment variable.

Some of the necessary steps to work with RLF models are given on the next three slides.

s

Using Lmdl

e Set up your working directory

via UNIX environment variable RLF_LIBRARIES

Slide 85 ® $RLF_LIBRARIES Sets your library directory
- needs subdirectories /Text and /Taustuff

- often referred to as the Instances directory

- contains the Ada data structures that make up an
RLF model and library

Using Lmdl (con

Sample working directory:

~nancy/Models
/Instances
/Text
Silde 86 /Taustuft
/modell
/modell.1lmdl
/rbdl_stuff

/Text

Nancy needs access to executables Lmdi, Rbdl, Run_GB,
Graphical_Browser, and necessary X resource definitions

&

Page 58

February 1993 | STARS-UC-05156/020/00

—

Using Lmdl (cont)

e Create Lmdl specification using your usual text editor

8.g. model1.imdl
Slide 87

e exacute seteny SRLF._LIBRARIRS
your-dir/instances

e execute Lmdl modell.lndl

@ execute Run._GB to see results of model definition

——

For many of the model development stages shown in these notes, a network diagram is
included that indicates some essential features of the model at this stage of its development
along with a slide that shows some LMDL statements tha¢ define what is shown on the
diagram. This package also includes a slide or two which summarizes the goals of each stage
and points out interesting RLF features that are applied to meet these goals.

The first stage model builds a preliminary taxonomy of sorting algorithms.

RLF Model Stage 1

o There is no one rightway to begin

o One approach is to look for natural categorization within the
Slide 88 domain

o For sorting, a natural distinction is between internal (e.g. array)
and external (e.g. file) sorting

e Within these two categories, a number of subcategories are
known (e.g Wirth's book: Algorithms & Date Structures)

February 1993

STARS-UC-05156/020/00

One top-level decomposition is shown on the next slide and the complete LMDL specification

file is shown in SLIDE 90.

s

rubrn-y model stage_1 is

root category ("Sort Algorithms") is
and root category;

category "Internal Jorts® ("Sort Algorithms®) is
end category;

category "External Soxts" ("Sort Algorithms*®) is
end category:

8lica 90

category "Insertion Sorxts®" ("Internal Sorts") is
ond category;

category "Selection Sorts® ("Interpal Sorts®") ie
end category;

category "Rxchange Zorts® ("Interral Jorts®) is
end category;

S Ly TR TTRYTTTUTEE TR R TR o R Y Y Y T A T T I TR T TR YV AR TR ARSI T e e L
R g e T PR Bt AT :Y,;Q,”“iﬁ..‘,hj,}v ,ai i B .‘“‘3 ‘*\:‘".r",.’“"l,ff'? 2 Y,g‘ AT

" February 1993 STARS-UC-05156/020/00

r

category “Straight Merging” ("Rxternal Sorts®) is
end category;

category "Dist. of Init. Runa® (*External Sorts®) is
end category;

category "Natural Nerging® (“"External Sorts*) is
end category;

Slide 91

category "Multi-way Merging® ("Exterpal Sorts*) is
end category;

cutegory "Balanced Nerge®™ ("RExternal Sorts*) is
end catagory:

category "Polyphase Sorts® ("External Sorts®) is
ond category;

ond stage._l1l;

—

The next stage involves further decomposition of the preliminary taxonomy.

RLF Model Stage 2

e The top-level decomposition is too broad to be very useful

e The modeler must look to break dowri categories into
Slide 92 subcategories which are closer in granularity to the categories
of assets to be stored within the library

o Categories which correspond to known sorting algorithms are
likely to be useful

e The next slide focuses on decomposing the internal sorts only

The next two slides slide show the decomposition of the internal_sorts three main subcate-
gories into algorithm-level realizations of those three main categories.

Pege 61

February 1993

Slide 93

(

libzrary model stage_32 is

root catengory ("sort Algorithma™) is
atd oot category:

category "Intermal sorts” (“Sort Algorithma”) is
ond category)

category “Insertion Sorts" ("Internal Sorts") is
end cateyory;

Slide 84 category "Selection Borts" (“"Imtermal Sorts”) {s
ond category;

oategory “"Stzuight Selestion” ("felection Sorts”) is
end category;

category "Exohange Sorts” (“Intermal Sorts") is
end categery)

category “"Binary Insert" ("Insertion Sorts") is
end antegery;

sategory “Straight Insert” / “"Iasertion Borts") is
ond category;

Page 62

R B LU SN AR} ST A e £ ¢ SPT-T T EAT e RAR LA R 4 CIRTRNEE 4 s PITA T
BRI TR A R A AN N

February 1993 STARS-UC-05156/020/00

f"

Jategory “Diminishing Inorement” (“Insertion Worxts®) is
ond sategory;

category Shellsort (“Seleotion Sorts") is

ond category;
category Neapsort (“Selection Sorta*)} is

Slide 958 end category;
tegorv shak: %t (“EBxchange forts:) ia

ond oat .yory)

oategory Quisksort {(“Ewchange Sorts") is
end categozy;

end stage_2)

While the method shown in this section begins with an initial definition and elaboration of
a model specialization hierarchy, some models may be more naturally built by concentrating
on establishing a basic aggregation hierarchy for a small collection of categories and letting
the specialization hierarchy grow as required. This choice is also somewhat based on the
natural inclinations of the model builders themselves.

10 RLF Model Evolution

After producing a class hierarchy of the proper granularity, RLF models can then be config-
ured to distinguish members of the taxonomy in terms of various class properties.

Page 63

February 1993 STARS-UC-05156/020/00

RLF Model Stage 3

e The RLF captures properties in terms of its aggregation hierarchy
(relationships)

o Relationships have a name, a target type and a cardinality

Siide 96 o Ralationships are defined for categories

o Subcategories inherit the roles of their parents

o Subcategories can restrict the target type and cardinality of inherited
roles

o Objects which instantiate categories also need other objects to “fill"
the relationships which the object has by virtue of it:: category
membership

Once the definition of AdaKNET relationships begins, the use of the sort_algorithms class at
the root of the specialization hierarchy no longer seems appropriate. In fact, many AdaKNET
models begin with a generic thing root category so that somewhat unrelated sub-networks of
the model can co-exist. In this example, a subtree is needed to locate and reference the value
space for the various kinds of attributes used to classify sorting algorithms. This bifurcation
is shown in SLIDE 97. SLIDE 97 also shows a collection of 5 relationships which are declared
for the category sort_algorithms. The following slide gives the LMDL statements needed to
establish the AdaKNET structure shown in the picture.

Page 64

February 1993

Slide 97

(

library model stage_3 is

«=| Define the root node

root category Thing is
end root category:

cat.egory “Sort Algorithes® (Thing) is
relationships
is_written _in (0 .. infinity) of *Source Language*;
works_on (0 .. infinity) of "Data Structure®;
has_bhest_case_of (0 .. 1) of Performance;
has_avg_case_of (0 .. 1) of Performance;
has_worst _case_of (0 .. 1) of Performance;
bas_size_of (0 .. 1) of "Lines of Code";
ond relationships;
end category;

category "Attribute Values® (Thing) is
exd category;

category “Source Language® (“"Attribute Values®”) is
and category;

category “"Deta Structure® ("Attribute Valueg®) 1s
ond category;

category Performande ("Attribute Values") is
end category;

end stage_3;

Page 65

STARS-UC-05156/020/00

February 1993 STARS-UC-05156,020/00

After a model’s specialization and aggrepaticn hierarchies have been fleshed out sufficiently,
the modeler is in a position to address the ideniification and location of library assets ~
object instances of the categories already deveioped in the niodel.

.

RLF Model Stage 4

e AJdaKNET objects are declared as individuals in LMDL

@ Individuals must declare their category parent(s) and any
Siide 89 relationship filiers that are known

o AdaKNET: permits partial descriptions for objects whose
properlies are only partially instantiated

o Any parent category relationship whose legal cardinality
inciudes O may be omitted from the object’s list of fillers.

A simple exat .ple of the declaration of an actual sort algorithm implementation and the
filling of a relationship of the parent category by that object is shown in the next two slides.
Note that the object Heap Ada restricts the cardinality of the is_written_in relationship it
inherits from Sort Algorithms and then fills this relationship with an object belonging to
the Source Language category.

Slide 100

Page 66

Wide 101

Slide 132

" February 1993

The LMDL doclarations defining the appropriate relatiouships and relationship restrictiouns
are given in SLIDE 101.

fuuuy asdel rtage d e

1] ’ .
eategory “Scut Algorithms® (Thing) As
velatienships
i written_in (0 .. infinity) af “source lLanguage';
worke on (0 .. infiniey) of ‘Data Stxvoture”;
bas_best_ecase of (0 .. 1) of Ferformance)
bas_avy._cease of 0 .. 1) of Performance;
bas_woret_case of (0 .. 1} of Rerformance;
has_sine_of (0 .. 1) of “Lines of Coue";
and xelaticnships)
snd gategoyy;
antegory "Bourve Language” (“Attribute Values®) is
ol category)

object Ada (“Bout've Language®) is
ond ohjest:

category “intermel Soxte* ("rout Algorithme™) s
end vategory’

category “felection Sorts" ("Intermal Ports") is
ond oategory!

7

category Neapsort: (“"Seleution Sorts*) e
ond gstegory:

object “Nead Ada* (Reapsurt) is
restricted relationships
is_written in (1 .. 1) of "Source Language";
works_of1 (1 .., 1) of “Data Ftxuctuse*)
bap_worst_osse _of (1 .. 1) of Linesritimio)
has_avg _ocase_of (1 .. 1) of Linearitimio;
has_sine_of (1 .. 1) of Number;
ond restricted)
tilless
Ma satisfies is_written _in;
Axzay satisfies works_rn;
" * log (M)* satisfies has _worst_case_of;
"N/ 2) * LOG (M)" satisfies has_avg_case_of;
Rightosn satisties has_size_of)
end £illers,
ond ohject;

b“

11 RLF Hybridization

Once mcdel individuals have been identified, the modeler must address the contents of
these individuals (the real assets being managed by the iibrary), and the processing of asset
contents approvriately. The RLF provides for the declaration of category and object state
information and the declaration of actions to process the information.

Page 67

STARS.UC-05156/020/00

February 1993 STARS-UC-05156/020/00

RLF Model Stage 5

¢ Both categories and objects can have contents (RLF state)

o State values can be integer or string valued, or can be the names of files
which contain state informatio:

* 0.9, state attached to a subcategory of Sort Algorithm can explain some
Siide 103 key features of the subcategory

* 0.9, state attached to an asset object (AdaKNET individual) can pointto a
file which contains the code that implements the asset

o RLF actions are themselves declared within the overall domain model

o LMDL declarations connect pieces of state information to the actions that
can process them

@ Actions are inherited by subcategories, but state values are not

The model being demonstrated in conjunction with this tutorial only provides two simple
actions to display source code of an asset and text files which describe an algorithm. The
action subhierarchy of the model (derived from the root category) is shown in the next slide.
SLIDE 105 declares these two actions and shows how they are connected to some examples
of state information that they can process.

(

Attribute_Values

Page 68

Slide 198

Slide 108

STARS-UC-05156/020/00

— —

Aibreaxry nodel stags_$ i»

oatagory “Sort Algoritlms" (Thing) is
velationships

ond zelationships;
end category)

category “Actlion Definition" (Thing) Ls
oend category;

categoxy "Motion Type* (“letion Definition") is
ond categnry)

category “Oystea String"” (“Action Type“) is
end category;

category "Ada Procedure” ("Action Type®) is
ond category;

category Actiop ("Aotion Definition") is
relationships
has_action_type (1 .. 1) of "Action Type";
ond relationships;
ond categery;

‘f

N «nd category:

category View (Aotion) is
restricted relationships
bas_actian_type of "System String";
ond vestrioted;
attributes
stxing is “xtemm -~e $RLY_PAGER #8 &%)
ond attributes;
and category)

gacegory “Display Desoription™ (View) is
attributes
string 10 “"xterm -¢ SRLFY _PAGER ## a*;
end attributes;
ond category)

category "Juternal Soxts* ("Sort Algoritims”) ie
end category)

outegory "Insertion Sorts® ("Internal Soxts”) s
attributes

2ile deso_source is “sort_and_searvh/insertion_sort_daso)

ond attributes;
astions

‘“Read Description* is "Display Desoription’ on desc_source

end actions;

Page 69

February 1993 STARS-UC-05156/020/00

r

object “Esap AMa* (Neapsort) is
restricted relationships

otd restriated;
£illers

ond £illexrs)
SHCe 107 attributes
£4le desc_sourve is “"sort_and_search/selection_scrt_desc")
file souxce is "sort_and_search/heap_spec_.a*;
end attributes;
agtions
"View Source® is View on sourve)
“Extract dourvs' is Extraoct)
ond actions;
ond object)

\———_-—

A library model may have been initially created elsewhere but must be maintained and
enhanced locally. The simple declarative syntax of LMDL makes it relatively easy to add
new assets to a library change asset characteristics, install their contents and make viewing
and processing the asset available to library end users. Currently, such changes require that
the library’s LMDL description file be edited and re-translated by the LMDL processor.

12 RLF Models and Submodels

Model creation and elaboration is not an exact sciecnce. Model revision is likely as model
iteration proceeds. The stages shown in these notes do not provide examples of all RLF
features, but they should give the beginning RLF model builder enough information to get
started. The last stage considered here prior to considering the addition of RLF inferencing
support to the model represents the decision to include searching algorithms as a natural
extension to the sorting model.

The joining together of models is made easier by RLF v4.1 support for separate specifica-
tion of model sections and the combination of these sections through incremental LMDL
processing. Incremental LMDL is addressed in the Administrator tutorial. Thus, while the
following example shows the embedding of the Search submodel within the original LMDL
specification, it could be defined in its own specification file with the appropriate reference
to the containing model.

Page 70

PRy RIS AN OR i -

February 1993 STARS-UC-05156/020/00

AN A

RLF Model Stage 6

f'

e Inpractice, sorting and searching data structures go
hand-in-hand

e The search taxonomy is analogous to the sort taxonomy

Stide 108 o Sort and search algorithms can have similar and related

properties

e A user who requires a sort often requires a compatible search
routine to go with it

¢ A new algorithms category is chosen as an intermediate class
between the sort and search subnetworks

The complete model specification of the search and sort model is too large to be included
here. A portion of the newly added search sub-model is shown on the next slide (only the
specialization hierarchy is shown).

f

Slide 109

The complete Sort and Search Algorithms model is included among the sample models
within the RLF v4.1 release.

Page 71

February 1993 STARS-UC-05156/020/00

13 RLF Model Inferencing

The next series of slides discusses the basic features and modeling approach provided by
the AdaTAU inferencing subsystem. As mentioned earlier, AdaTAU provides the ability to
“program” how a user can make effective use of the information within a complex network
model and to explain key features of the model, thereby helping a user to learn about the
model.

r
Fact Bases in AdaTAU

¢ Basic AdaTAU nbject is an "“inference bass" or “inferencer”
¢ Composed of "“fact bases" and “rule bases"

e Fact bases are collections of “facts"
Slide 110
- Facts are items represented as (attribute, value) pairs

- Facts are restricted according to a defined fact base schema

- Facts can have one-and-only-one, some, or arbitrary (a,v)
pairs as assertions as dictated by the schema

- An assertion is when a fact, given as (a,v) pair(s) are
installed in a "fact base"

In addition to facts about the domain model and the user’s perception of the model, AdaTAU
provides rule bases to process fact bases and thereby expand the what the user knows about
the model and its contents.

Page 72

February 1993 STARS-UC-05156/020/00

Slide 111

Rule Bases in AdaTAU

¢ Rule bases are collections of "rules”

e Aruleis said to be "fired" whan its action is performed because
its antecedents are asserted

e There are three kinds of rules with diffarent actions
- lrules (inferenca rules) - assert “consequent” facts

« Qrules (question rules) - queue a question to ask the user

- Frules (focus rules) - queue suggestion fo switch inference
bases

The content of an AdaTAU Inference Base is determined by a set of declarations that define
the needed AdaTAU fact and rule base structures. These declarations are written using
RBDL - Rule Base Descripticn Language — and consist of sections as shown on SLIDE 112.
An individual RBDL file may in fact include only a few of these sections the majority of
them are optional.

Slide 112

f
Inference Base Components

¢ fact base schema - describes facts and potential (a, v) pairs
¢ initial fact base - facts: asserted at startup

o fact parameters - describe facts passed between betwee::
inferencers

o irule base - collection of irules
o grule base - collection of qrules
® question base - collection of questions queued by qrules

¢ frule base - coliection of frules

h

AdaTAU operations are done in a cycle until nothing more can be done:

Page 73

February 1993 STARS-UC-05156/020/00

o Think - fire any rules whose antecedents are asserted

o Ask - choose the highest priority question and ask it

¢ Update - add consequent facts of questions to local fact base
This inference process is summarized on the following slide. Note that the current AdaTAU
inference cycle is just one of many possible cycles that could be implemented using the RLF

software. Changing the inference cycle requires modifying RLF Ada code at a fairly high
level so that RLF application builders can modify it themselves.

(Basic Tau Inferencer

Information Flow = = - =
Control Flow ———mwuay

Slide 113

In distributed AdaTAU (DTAU) you also see if a switch between inferencers has been queued;
if so the fact parameters are exported to the suggested inference base and in most circum-
stances the user continues the inference process in the new inference base contex:.

AdaTAU, like AdaKNET, has complex set of Ada interfaces and a specification language is
provided to insure that the interfaces are used correctly.

Page 74

February 1993 STARS-UC-05156/020/00

r
Rule Base Description Language ~

RBDL

e Adsa-like non-procedural language
Slide 114 e Specifies all seven AdaTAU elements

e |s translated to produce files which represent an
inference base

¢ |s modified and re-translated to change the infarence
base

The last two stages of the Sort and Search Algorithms model evolution touch on the
provision of more heuristic, procedural information aimed at guiding (advising) users about
the domain model and the assets contained with the library. This sort of information is
captured by using the RBDL language within the AdaTAU subsystem of the RLF. AdaTAU
can be applied to guide users through a structurally complex network mod«l and direct them
to look for and extract information in the manner that a domszin expert raight use.

In actuality, the demonstration model used here is probably too simple to require the provi-
sion of such a guided mode of interaction but the next two stages will explore the development
of such a mode to 1illustrate the application of AdaTAU.

Page 75

February 1993

Slide 118

STARS-UC-05156/020/00

" RLF Model Stage 7

e A complex modei may bawilder inexperienced users
o Extracting components from such a model can be tedicus

o Solution is to provide supportive guidance in the navigation and
use of the model

e AdaTAU inferencers are attached as state to AdaKNET
concepts and/or individuals

e RLF provides built-in inferencing “action” to process these
inferencers

o Inferencers orovided auto-navigation

SLIDE 116 shows an LMDL fragment that attaches some inferencers to the demonstration

model.

Slide 118

r

library model stage_7 is

root category Thing is --| Define the root nods
end root category;

category Algorithms (Thing) is
relationships
is_written_in (0 .. infinity) of "Source Language®;

and relationships;
end categery;

attach inferencer algorithms to Algorithms;

oategory "Sort Algorithms® (Algorithwms) is
end acategory;

attach inferencer sort_algorithms to “Sort Algozrithms®;

The next few slides consider the sort.algorithms inferencer in some detail. During the demon-

Page 76

February 1993 STARS-UC-05156/020/00

stration, other initial inferencer versions may be shown to show AdaTAU and RBDL features
in additional detzil. In SLIDE 117, the basic structure of the facts that this inferencer can
process are declared.

(

fact base schema schema_sort_ algorithms is
prior context : one_of (algorithms, sort_algorithms,
internal_sort, external_sor:, system, unknown);
answer : one_of (internal_sort, extavmpel_sort,
dont_know, still_dont_know, urkmown);
sontinte_confirmed : some_of (Yes, no);
no_hits : one_of (yes, no);
ond schema_sort_algorithms)

fact parameters is

imports : (prior_context > mandatory);
Slide 117 exports : (prior _ccantext => focal),
and fact parameters;

initial fact base init_tacts_algorithme is
(answer, “ﬂkﬂm) ’
(continue_contirmed, no),
(prior_contaxt, system);

ond init_facts_algorithns;

. e

inferencer sort_algorithms is
gqrule bese : qrules_sort_algorithms;
frule base : sorzing frules;

end sort_algorithms;

SLIDE 118 declares some of the questions that the inferencer may ask users while they are
interacting with the inferencer.

VY PTTTRITRA U TR Y

February 1993 STARS-UC-05156/020/00

Slide 118

(

question kase questions_sort_algoxrithms is
question soxt_type_selection is
text : (Select type of aort algorithm, internmal for sorting
an array for example, external for date ou tap..):
type t one_of;
responses :
"Internal® => ~(answer, unknown), (answar, intexnal_sort):
*External® => ~(answer, unknown), (auswer, extezrunal_sort);
*Don't know"” => ~(answer, unkncwn), {answex, dont_Xnow);
end question;

question give_up_question is
text : { Thers is no further advice I can give without a
selection at this point.);
type : one_of;
Tesponses
“Confirm® =«> (no_hits, no);
end question;
end questione_sort_algorithns;

Questions are posted to an agenda that is under the control of the AdaTAU inferencer engine
as a result of the execution of QRules. The structure of Qrules is illustrated in SLIDE 119.

Multiple AdaTAU inferencers may be declared to lie within an RLF model. Focus rules
(FRules) within individual inferencers direct the user’s attention from place to place within
the model, deducing appropriate facts as these transfers of focus take place. An example of
such a rule is also shown in SLIDE 119.

Page 78

February 1993 STARS-UC-05156/020/00

Slide 118

Slide 120

R RS
qrule base qrules_sort_algorithms (questions_sort_algorithms) ie

qrulew soxrt_type_selection is
antecedent : (answer, unknown);
question : sori_type_sslection;
weight 1 1;
Justifination : (Determine whether or nct intermal or
axternal sorting algozithme are desired.);
end gqruie;

qrule clarify question is
antecedent : (answar, dont_kaow);
question : clarify_gquestion;
waight : 1,
Justification : (To give an explanation and prompt for a
chuice again.);
ond qrule;

qrule give_up_question is
antascedent : (answer, still_dont_xnow);
question : give_up_guestion;
welght : 1,

Justification : { Carnot proceed without further imput.};
eni grule;
oend grules_sort_elgoerithms;

frule base Sozrcing PFiules is
frule Internal_Interest is
antucedent : (answer, internal_sort);
export : (priorz_contexc, sort_algorithms);
focus : intermal_sorts;
weight : 1,
Just:ification : (Since advice on internal sorting algoirithmse
is desired, we will move there.);

end frule;
end Sortiug _Prules;

The structure of an inferencer is directed to ask the user appropriate questious about the
user’s intentions with respect to the library assets which are stored in terms of the available
library model. The model builder structures questions and forms rules in each of the available
rule classes to elicit sufficient informatior: from the user so that the user’s attention is drawn
to assets that are likely to meet the users needs.

The last stage of the model building stages shown in this orientation package is the com-
plete Sort and Search Algorithms model including one inclusive LMDL file and fourteen

Page 79

February 1993 STARS-UC-05156/020,00

separate RBDL files. The complete text of these files is too iarge to include here. During
the orientation, the operation of a library based on this model was demonstrated.

A good place to begin to explore the RLF is to take the basic specification files discussed
here and elaborate them in various ways. In particular, additional inferencer specifications
can be provided that direct users to access the model to meet other user requirements.

Page 80

